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I Introduction Distribution Unlimited

This research project focused on issues met in using large-eddy simulation (LES) to predict

turbulent nonpremixed combustion. LES has been recognized as a very promising approach to

modeling such flows[l, 2, 3]. In this approach the subgrid-scale (SGS) scalar mixing and the

resulting instantaneous distribution of scalar values in each grid volume (i.e., the filtered density

function) must be faithfully represented in order to accurately predict the chemical reaction rate.

An important modeling method uses the transport equation of the filtered joint density function

of velocity and scalars in which both the reaction source term and the turbulent transport terms

are in closed form[3]. This research studied issues in using this approach by investigating the SGS

mixing of conserved scalars which often play a crucial role in LES of nonpremixed combustion.

Significant progress has been made in understanding the SGS velocity and scalar filtered density

function and their dynamics and issues of LES modeling. Specifically, the following work was

completed:

* Proved Galilean invariance of the velocity probability density function (PDF), velocity fil-

tered density function, their transport equations, and the statistics conditional on one-point

velocity. The proof provides a formal justification of using the PDF-based approach to model

turbulent flows in a manner that is invariant in any inertial reference frame.
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" Investigated the filtered joint density function of velocity components (VFJDF) and its trans-

port equation using experimental data. The VFJDF and the structure of the SGS velocity

are found to strongly depend on to degree of nonequilibrium spectral transfer.

" Investigated the dependence of the structure of SGS velocity on the nonequilibrium spectral

energy transfer. The results are important for establishing a framework for modeling the

degree of nonequilibrium spectral transfer and the VFJDF.

" Investigated the filtered joint density function of velocity components and a conserved scalar

(VSFJDF) and its transport equation using experimental data. The VSFJDF and the cou-

pling between the SGS velocity and scalar are found to depend strongly on the degree of

nonequilibrium spectral transfer.

" Investigated the dependence of the structure of SGS scalar fields on nonequilibrium spectral

energy and scalar transfer. The dependence is important for establishing a framework for

modeling the degree of nonequilibrium spectral transfer and the VSFJDF.

" Investigated the issues of modeling the filtered energy dissipation and the filtered scalar

dissipation.

" Conducted a preliminary study of SGS mixing of the mixture fraction and the SGS flame

structure. The study was based on the knowledge gained in the above-mentioned work, and

the preliminary results have strong implications for studying SGS flame structure and local

extinction and reignition.

The primarily findings of this research are discussed in the following.

II Nomenclature

B = K - S 2  bimodality parameter

f (joint) probability density function (PDF, JPDF)

fL filtered (joint) density function (FDF, FJDF)

K kurtosis

kL = ((U" 2 )L + (u 2 )L)/2 SGS kinetic energy

kr (= kL) local kinetic energy
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P (joint) probability density function

: = - ((ujq)r - (uj) (O)r) (4)r SGS scalar variance production rate
Dxi

r separation between two points

S skewness

u fluid velocity

(U)L resolvable-scale velocity

v sample-space variable for u

VFJDF velocity filtered joint density function

Z mixture fraction

Oui OujEiJ = u•i- velocity dissipation tensor
iOxk 19 Xk

-au Oau energy dissipation rate

EL WL filtered energy dissipation rate

Er (= EL) locally averaged energy dissipation rate

7 Kolmogorov length scale

x D'0¢ scalar dissipation rate
SOxj Oxj

XL = (x)L filtered scalar dissipation rate

Xr (- XL) locally averaged scalar dissipation rate

v kinematic viscosity

mixture fraction

W'2)L SGS scalar variance

(W"2 )- (= ('" 2)L) local SGS scalar variance
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III Findings

The velocity-scalar FJDF method was recently established by Peyman Givi and Stephen Pope

[3]. It solves the velocity-scalar FJDF transport equation in which the SGS scalar transport term

is in closed form. More importantly, this approach allows mixing models to depend on velocity,

thus having the potential to provide a more realistic description of the SGS mixing, which is local

in physical, velocity, and scalar spaces. Consistency with these conditions of localness is key to the

accuracy of PDF-based approaches. We studied the FJDF and its transport equation for improving

the velocity-scalar FJDF method.

The FJDF of velocity, u, and scalar, € is defined as
~.3

f.0 (V, ý; X, t) =] J [ui (x', t) - vil 6[0 (x!, t) - ý]G('- x)dx',()

where t, x, v, q, 6, and G are time, the physical-space coordinates, the sample-space variables for

u and €, the Dirac delta function, and the filter function, respectively. The integration is over all

physical space. The FJDF represents the weighted joint distribution of the velocity components and

the scalar in a grid cell. The transport equation of the FJDF is obtained using the Navier-Stokes

equations and the scalar transport equation:
Dfu0L - Ofu-PL _

9 (P)L 19 fuOL a9 V9P'at v3--f x -oxj O vv'ojj
0 02 i ^ 0x 096 3.

a ____ a9 a2o- v {(_ Iu = v, 0 = )Lf4L}--=L (2)
49vi 49Xp9Xa .90 jaxj1U = V, )Lf OL}-(2

where ( U = v, € = ý)L denotes a conditionally filtered variable conditional on the velocity

vector and the scalar. The left hand side represents the time rate of change of the FJDF and

transport of FJDF in physical space. The terms on the right hand side are transport of the FJDF in

velocity space by the resolvable-scale pressure gradient, SGS pressure gradient, viscous acceleration,

and molecular diffusion. An alternative term to the conditionally filtered scalar diffusion is the

conditionally filtered scalar dissipation (Xlu = v, 0 = q)L, where X = D a -L is the scalar

dissipation rate.

Unlike a PDF, which is a statistic, the FJDF is a random process, and therefore requires statisti-

cal descriptions. In this research we employed conditional sampling and averaging techniques. Our

previous studies of conserved scalar FDF and the FDF transport equation using these techniques

[4, 5, 6] have shown that the SGS scalar has close-to-Gaussian and bimodal FDFs for small and

large instantaneous SGS variance, respectively. In addition the SGS scalar is in spectral equilib-

rium (production of SGS variance smaller than dissipation) and non-equilibrium (production larger

than dissipation), respectively. The bimodal SGS scalar contains diffusion layers, thus is similar

to a nonpremixed scalar field. The results suggest that mixing models that can better predict the
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non-equilibrium regime are needed. In this work we investigated the statistical dependence between

the SGS velocity and scalar fields, and the effects of the SGS velocity on SGS scalar mixing. The

FJDF and the SGS terms in the FJDF transport equation are analyzed using their conditional

means with the SGS scalar variance (k" 2)L and the SGS kinetic energy, kL = ((u'r)L + (U' 2)L)/2

as conditioning variables.

We conducted experiments in an axisymmetric turbulent jet and used the experimental data to

analyze the unclosed terms in the velocity-scalar FJDF and its transport equation. Measurements

were made at 80 jet nozzle diameters, D, (=15 mm) downstream. The jet Reynolds number UD/v

was 40000. A sensor array consisting of three hot-wire probes was used to obtain data for performing

filtering operations in both the streamwise (x) and transverse (y) directions. The filter size was

varied from 63 to 250 Kolmogorov scales. This technique enabled us to acquire a large amount of

data (2 x 108 samples) necessary to achieve sufficient statistical convergence.

In the following we briefly outline the results from our study and their implications for LES.

A. Galilean invariance of velocity PDF and FJDF

In turbulence and turbulent combustion modeling it is generally necessary for the model equa-

tions to have the same Galilean transformation properties as the exact transport equations. The

Navier-Stoke equations and the moment equations for turbulent fluctuations are known to be

Galilean invariant. Thus the modeled equations must also be Galilean invariant.

PDF methods have become an important modeling approach in turbulent flows, especially

for reacting flows[7, 11. In this approach the PDF transport equations are modeled. Although the

modeled velocity PDF equations are implicitly assumed to be Galilean invariant in the literature[8J,

the Galilean transformation properties of both the exact and modeled PDF equations have not been

given previously (even the transformation property of the PDF itself has not been discussed).

Another motivation for this analysis was the Galilean transformation properties of statistics

conditional on turbulent velocity, which are important in studying turbulent flows. In fact, the

key terms in the one-point PDF equation are means conditional on velocity at a point. Statistics

conditional on the resolvable-scale velocity are also frequently used in analyses of the subgrid-scale

stress and models in large eddy simulation. However, the Galilean invariance issue associated with

such conditional statistics has not been previously addressed and there seems to be some confusion

in the literature as to whether or not they are invariant under Galilean transformations. In this

work we also considered this issue.

We first examined the transformation properties of the velocity joint probability density function
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(JPDF)
3

f.(v;x,t) = (1 f3[u-vi]) (3)
i=1

where an (-) denotes an ensemble mean. The Galilean transformations from one inertial reference

frame (x, t) to another (x*, t*) are

x x=x+Ut, t*=t (4)

where U is the (constant) velocity of the reference frame (x, t) relative to (x*, t*). Thus a velocity

field transforms as

u*(x*,t*) = u*(x + Ut, t) = u(x,t) + U (5)

Thus the velocity is not invariant under Galilean transformations.

To transform the JPDF, in addition to the transformations in Eqs. 4 and 5, a transformation

of the sample space is needed because the JPDF is also a function of v. Since an event u = v is

equivalent to u* = v + U in the new frame, the transformation is

v* = v + U. (6)

Thus the sample space is not invariant. The transformation of the JPDF then is

3 3 3

f,(v;x,t) = (fl[ui-v,]) = (fl6[u.-_u-(v.4- U)])= (flr [u._-v.]) = fu*(v*;x*,t*). (7)
i=1 i=1 i=1

3

Therefore, the JPDF (as well as the fine-grained JPDF -I J[uj - vi]) is invariant under Galilean
i=1

transformations even though the velocity is not. The invariance of the JPDF is due to the invariance

of ui - vi in which the non-invariance of ui and vi is canceled. Since the transformations of both

the velocity and the sample space are involved, the transformation of the JPDF is conceptually

somewhat different from those we usually consider, such as the Reynolds stress and subgrid-scale

stress. An intuitive way to understand the invariance of the JPDF is that one obtains the same

JPDF values using the variables before and after the transformations. Equation 7 shows that the

functional form of fu. is the same as fu shifted by the amounts U and Ut in the velocity sample

space and in physical space, respectively.

Because the sample-space variable is an independent variable, the transformation is in a way

similar to that for a scalar variable 0. We note that the transformation of the sample space is a

key step in establishing the Galilean transformation property of the JPDF. If this step is omitted,

the transformation group is incomplete, and a transformation v* = v is implied. The incomplete

group results in the transformation f,,(v; x, t) = f (v* + U; x*, t*). Thus the JPDF appears as
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non-invariant. The transformations in Eqs. 6 and 7 preserve the transformation properties of the

moments of the JPDF (for example, the Reynolds stress (uju') = (u*'u7')).

The JPDF transport equation is obtained from the Navier-Stokes equations and the definition

Eq. 3[7] Of,, Of,, 0 Op 0 O2u,

&+V - _vi lu = v_- _ -{ _ = }(

where ( -u = v) is a mean conditional on the velocity. Using the transformations in Eqs. 2, 3, 8

and 9, the transformations of the terms in the JPDF equation can be obtained as follows:

_-= O + 09; 09 + ÷ 09-•' 0 = 0x• (9)axj*~ ~ & 0 e ix, 1"

, °lu = v)f}: = 4 lu v*)fu,.} (10)
0 V~ a0Xi 0vi 0au*z

-- I{(Ox, 3U= v)f,,} = 1{( I u* = v*)f,,*} (11)

Therefore the JPDF transport equation is invariant under Galilean transformations. The invariance

might not seem intuitive since the conditional averages in Eqs. 10 and 11 shift in the velocity

sample-space under Galilean transformations. However, because v is an independent variable,

dependence on it is generally expected and does not lead to non-invariance as long as the forms of

the transformed terms are invariant. Thus both the JPDF equation and its solutions (as well as the

initial/boundary conditions) are Galilean, invariant, In contrast, while the Navier-Stokes equations

are Galilean invariant, their solutions are not.

The conditional means in Eqs. 10 and 11 are Galilean invariant because the conditioning event

u = v is equivalent to u* = v + U = v* in the new reference frame. This argument also leads to

Galilean invariance of the conditional statistics of any Galilean invariant variable conditional on

the velocity. The invariant property provides an important basis for using conditional statistics

conditional on the velocity in studying turbulent flows and for extending results to other inertial

reference frames. Again, the key step leading to the invariance is the transformation of the sample

space. Like the velocity JPDF, the conditional statistics appear as non-invariant if this transfor-

mation is omitted. This fact might be a cause for the confusion in the literature as to whether the

conditional statistics are Galilean invariant or not.

The above analyses were extended to the filtered joint density function (FJDF) used in PDF-

based large-eddy simulation and its transport equation[2]. Speziale[9] showed that the filtered

(large-scale) part of a Galilean invariant function is also Galilean invariant. Because the fine-

grained JPDF is Galilean invariant, its filtered part, the FJDF

3 3] [ui(x', t) - v=IG(x - x)dx J f [uý(x*, t*) - v]G(x*I - x*)dx*I (12)
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is also Galilean invariant. Thus all Galilean-invariant models for the PDF methods can be extended

to PDF-based large-eddy simulation.

In summary, the JPDF and its transport equation were shown to be Galilean invariant. For

constant density flows they are also invariant under extended Galilean transformations. In addition,

the conditional means in the JPDF equation as well as the conditional statistics of any Galilean

invariant variables conditional on the velocity are invariant. A key step in establishing these

transformation properties is the proper transformation of the sample-space variable which makes

the group of Galilean transformations complete. The present work provides support for PDF

methods and a basis and justification for studying turbulent flows and turbulent combustion using

statistics conditional on the velocity.

B. Velocity FJDF, conditionally filtered viscous acceleration, and dissipation

We now discuss the results on the velocity FJDF and its transport equation. The understanding

gained provides a basis for studying the velocity-scalar FJDF.

Unlike a PDF, a VFJDF is not a statistic, but a random process and must be characterized

statistically. For a filter size smaller than the integral length scale, the mean VFJDF approximately

equals the velocity JPDF, which is generally not far from joint-Gaussian in regions of fully devel-

oped flows without large-scale intermittency[10, 11]. Therefore the mean VFJDF does not provide

additional information on the VFJDF. However, other important characteristics of the VFJDF

can be revealed by its conditional means. Recent results obtained by the PI on conditional scalar

FDF and scalar-scalar-dissipation FJDF have provided important characteristics of the SGS scalar

field[4, 5, 6]. The SGS scalar has been found to be in quasi-equilibrium (SGS production equal to

or smaller than dissipation) and non-equilibrium (SGS production exceeds dissipation) for small

and large SGS scalar variance, respectively[4, 5]. Here, for convenience, we refer to both the cases

of SGS production equal to and smaller than dissipation as quasi-equilibrium because the SGS

scalar has very similar characteristics for the two cases. The FDF and the terms in its transport

equation in these two regimes have qualitatively different characteristics. For equilibrium SGS

scalar fields the FDF is, on average, close to Gaussian (Fig. 1) and the scalar dissipation has only

moderate dependence on the SGS scalar. These properties are similar to those of unfiltered scalar

fluctuations in fully developed turbulent flows; however, for non-equilibrium SGS scalar fields (at

large SGS scalar variance), the FDF is bimodal, and the scalar dissipation depends strongly on the

SGS scalar. The SGS scalar is also characterized by the existence of diffusion-layer-like structure

(ramp-cliffs). These characteristics are similar to the scalar PDF in the early stages of initially

binary mixing[12]. Therefore, when used as a conditioning variable for the conditional scalar FDF,

the SGS scalar variance can reveal the structure of the SGS scalar that is otherwise averaged out,

providing important new SGS physics. This property of the SGS variance is partly because it is an

8
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Figure 1: Conditional FDF of mixture fraction, Z, in the jet. The FDF is Gaussian and bimodal for
small and large SGS variance values, respectively. The beta model is able to predict the Gaussian
FDF but not the bimodal FDF. The SGS variance normalized by its mean is given in the legend.

0.f 1 u ' ~ >(If 
I (u)L, kI)

0.2.2-

0.1, .1

-21 2 -

-1 1 11

0 0 0 0

L, 1(2k2) 2 -2 u2,,( 2 kL) (a) u"i/(2k) U2"I(2kY)I2 (b)

Figure 2: Mean FJDF conditional on the SGS energy and the resolvable-scale velocity: (a)
k!L/(kL) = 0.33, (U1)L = (u) (3 m/s), (U2)L = 0. The FJDF is close to joint-Gaussian; (b)
kL/(kL) = 4.2, (u)L = (u) (3 m/s), (V)L = 0. The FJDF has an approximately uniform region.

important variable in the inertial-range dynamics and for characterizing the state of SGS mixing.

Since the conditional scalar FDF for different SGS variance is dominated by different structures and

dynamics, it can potentially be modeled more accurately than the unconditioned FDF (or PDF),

leading to improved LES statistics. Therefore, such conditional FDFs are important for studying

SGS scalars and modeling SGS mixing.

The mean FJDF conditional on the SGS energy, kL, and the resolvable-scale velocity, UL is

shown in Fig. 2. For small SGS energy the conditional FJDF is close to joint-Gaussian, similar to

the JPDF in a fully developed turbulent jet, which is in quasi-equilibrium. For large SGS energy

(kL/(kL) = 4.2) the FJDF has an approximately uniform region, beyond which the FJDF decreases

rapidly (faster than joint-Gaussian). The existence of the uniform region suggests that the SGS
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Figure 3: Streamline plots of the conditional filtered viscous acceleration for A/, = 125,(M O.M (2kL) " (ulL = (ul) and (U2)4 = 0 (a) kL/(kL) 1.2,
1( 1 (CL I W

t9O-x2u l'20 )IUl'U2)LI(U)Lk tL) (Lk-)"(lL:(l n U) .C)k/k)=12

(b) kL/(kL) = 4.6. The magnitudes of these variables are given as grayscales.

velocity field under this condition contains structures in which the velocity varies approximately

linearly in physical space. Examples of such structures include axisymmetric contraction and

expansion, plane strain, and plane strain plus plane shear. Since these local structures occur at

large kL, the strain rate imposed by them is larger than the average turbulent strain rate near the

filter scale. As a result, the production of the SGS energy increases, and, when the strain rate is

sufficiently large, the "background" SGS turbulence (the SGS turbulence minus the structure) may

be undergoing local rapid distortion, suggesting that the SGS velocity field is in non-equilibrium,

because rapid distortion is a linear process and spectral transfer is not effective in responding to the

increased SGS energy production. Therefore, the dissipation lags behind the production, resulting

in local non-equilibrium. Also see discussions in Part C.

Since wavenumber information is needed to describe turbulence under rapid distortion, a con-

ventional one-point PDF model is not sufficient. To overcome this difficulty, Van Slooten and Pope

(1997) developed a velocity-wave-vector PDF model that gives the exact Reynolds stress in the

rapid distortion limit. The present study suggests that local rapid distortion might exist even when

the mean strain rate is not large. Thus it may be beneficial to adopt this model for LES so that

the local rapid distortion effects can be taken into account.

In the present study two (partial) components of the viscous acceleration were measured. The
, 9,, 2U, 1 a2 U2

conditionally filtered viscous acceleration, (V(-6x 2 , 2 x2 2Yn, conditional on the velocity
042 04)u1

components represents the transport velocity of the VFJDF by viscous acceleration in the velocity

space and is shown in Fig. 3 as streamline plots. A factor of 1/2 was used for the u 2 component

because for isotropic turbulence its rms is twice that of the ul component. The magnitude of the
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Figure 4: The conditionally filtered energy dissipation rate ((ECul, U2)L (U)L, kL)/(ELIkL) The con-

ditions are the same as in Fig. 3.

vector field, normalized by (2kL)1/ 2/(ELIkL), is given as gray scale isocontours. The streamlines

generally flow towards a stagnation point, which is approximately at the center of the VFJDF. The

magnitude of the acceleration increases with the magnitude of the velocity. This dependence is

similar to that of the scalar diffusion on the value of the scalar[13, 14, 15]. The conditional viscous
02U, 1 a 2u2

acceleration in the velocity JPDF equation, v(--ýj-2 -)u u2, also has similar properties
x1 2 1i

[Fig. 11(c)]. The normalized magnitude of the conditionally filtered viscous acceleration increases

faster for larger the SGS energy, probably because the local rapid distortion at large SGS energy

causes the SGS fluctuations and accelerations to increase, although the linear portion of the SGS

velocity does not directly contribute to viscous acceleration. The observed rate of increase might

also be partially due to the decrease in the normalized sample-space variable v/(2kL)1 / 2 . We note

that, although the conditional viscous acceleration is non-negligible, the rms viscous acceleration

becomes smaller than the rms pressure gradient as Reynolds number increases[16].

The conditionally filtered dissipation tensor, (Eij3 uI, U2)L, provides an alternative to the condi-
Oui Ouj

tionally filtered viscous acceleration to close the VFJDF equation, where eij= - - '?. Figure 4

shows the surface plots for the conditionally filtered energy dissipation rate (ElU 1, U2)L normalized

by the filtered energy dissipation rate, (ELIkL). In general, the dissipation increases with ul. For

small SGS energy the surface is concave, similar to the dependence of the scalar dissipation on

the scalar values for small SGS variance. The surface plot for the conditional energy dissipation

(etul, u2), which appears in the velocity JPDF equation, also has a similar shape. For large SGS

energy there is a slight bulge in the center portion of the surface, suggesting that the local velocity

field responsible for the large strain rate deviates somewhat from a linear field because the dissi-

pation is constant in such a field. Nonetheless, the deviation is small, as indicated by the uniform

portion of the conditional VFJDF. The moderate dependence of the dissipation on the SGS velocity

11
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Figure 5: Conditional production of SGS energy (energy transfer rate) normalized by the filtered
energy dissipation rate, (((UiUj)L - (ui)L (Uj)L)SJ IkL)/(eL IkL). The production exceeds the dissi-
pation for large values of kL, indicating non-equilibrium SGS velocity. The filter sizes are given in
the legend.

suggests that the current practice of modeling the dissipation independent of the velocity is largely

justified.

C. Structure of the SGS velocity

The non-universal VFJDF raises questions about the structure of the SGS velocity field. We

investigated the structure, which is important for modeling VFJDF. In turbulence under rapid

distortion, the spectral energy transfer rate is small compared to the production due to the mean

strain. Thus, the turbulent fluctuations gain more energy than the spectral transfer (and than the

dissipation) can remove, suggesting non-equilibrium turbulence. The SGS turbulence under rapid

distortion is also found to be in non-equilibrium[17]. To determine whether the SGS turbulence

under local rapid distortion is in non-equilibrium, we compared the production rate of the SGS

energy, TrijSij, to the filtered dissipation rate EL. Here Tjj is defined as (uiUj)L- (Ui)L(Uj)L. We used
1(T11S11 + 2T12S12 + T22S22) and 5v[(0ul )2 + (-u2)2] as surrogates for the full energy production rate

and the full dissipation rate, respectively. Figure 5 gives the ratio of the conditional production

of the SGS energy to the conditional dissipation conditional on the SGS energy. Indeed, the

conditional production exceeds the conditional dissipation when the SGS energy is larger than its

mean value, indicating that the spectral transfer is not effective in responding to the increased SGS

energy production and that the SGS turbulence is in non-equilibrium. This result is consistent

with those for SGS turbulence under rapid distortion by the mean flow[17]. The non-equilibrium

of the SGS velocity is similar to the non-equilibrium of the SGS scalar when the SGS variance is

large[5]. Like the non-equilibrium SGS scalar, which contains scalar structures (diffusion layers),

the non-equilibrium SGS velocity also contains structures.
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Figure 6: The parameters B as a function of kL/EL for A/lq = 125 for different kL values. The
collapse of the curves indicates that the VFJDF can largely be characterized by kL/EL/((kL)/(EL)).

To further examine the effects of the non-equilibrium SGS turbulence on the VFJDF we com-

puted the conditional VFJDF with the filtered dissipation EL used as an additional conditioning

variable. The SGS dissipation time scale, kL/EL, can be used as an indicator of the degree of the

non-equilibrium: large SGS time scale indicates that dissipation is not fast enough, and the SGS

turbulence is in non-equilibrium.

To quantify the dependence of the shape of the VFJDF on kL and EL, we used two slices of

the VFJDF going through the origin in the vj and v2 directions, respectively. We computed the

conditional kurtosis and skewness of the VFJDF, KUl1 •2 and SUl[U2 (for u2 = 0), which can be

obtained from the conditional fourth and third moments of (fU1 1. 2 (Vl)IkL, EL, (U)/), normalized

by the second moment raised to the proper power, where fufju2 is the FDF of the ul component

conditional on the u2 component (essentially a slice in the ul direction). The conditional kurtosis

and skewness KU21 and Su21uI can also be obtained in the same way. We combined K and S

to form a parameter B = K - S2, proposed by Atkinson[18]. This parameter takes the value

of unity for a double-delta PDF regardless of its symmetry, therefore, is a better measure of the

intermittency (or lack of) than the kurtosis. For a uniform distribution B has a value of 1.8. It

has been used to characterize the bimodal scalar FDF[4] and velocity increment PDF[19].

We examined Bu1 ju2 for u" = 0 and B, 21UI for u" = 0. If the VFJDF is perfectly uniform both

parameters have the value of 1.8. Figure 6 shows that B generally decreases with EL, consistent

with the observation that the VFJDF changes towards a uniform shape as EL decreases. Due to

the opposite trends of B with respect to kL and EL, we plotted Bui~U2 and BS212 l against kL/EL

for three kL values. Figure 6 shows that both BuIU2 and B 21u, decrease as kL/EL increases.

Furthermore, the curves for BU21]u appear to collapse for different kL values, although the results

for B 1 1U2 still show some kL dependence. Nonetheless, these results indicate that kL/EL alone
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can largely characterize the shape of the VFJDF. Specifically, the VFJDF is uniform as long as

kL/EL is large, i.e., when the SGS velocity is in strong non-equilibrium, regardless of the value

of kL. This condition is less restrictive than that of kL/(kL) > 1. The observed importance of

kL/EL in determining B,1 1 ,2 and B1 211 1 suggests that the degree of non-equilibrium is important

for determining the distribution of the SGS velocity field.

To further understand the structure of the SGS velocity, we also examined the conditional

velocity increment with separations the same as the filter sizes. The increment explicitly contains

(two-point) spatial information whereas the VFJDF only contains information implicitly. Therefore,

conditional velocity increment statistics provide essential information complementing the VFJDF.

In Fig. 7 we plotted the bimodality parameter conditional on kL and EL (here kr and E, are

used for kL and EL to indicate that the results are for increments) and for the velocity increment

PDF as a function of kjIEL, where p is the scaling exponent for (ejIkr) - kP?. We choose the
ratio of (E,.Ik,)/Er, ,'.- k1/E, as the variable because it is an indicator of the deviation of Er from its

conditional mean. For a randomly oriented plane strain field, BA, is bimodal. For all separations

considered, BA, decreases with kP/Er, and the increment PDF is bimodal for large kP/Er values.

Furthermore, BA, is approximately independent of the k, values, indicating that the bimodality

is largely determined by the relative magnitude of E, to its conditional mean, suggesting that the
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bimodality is closely related to the degree of non-equilibrium of the local velocity field because as

kr/Er increases the production of kr increases relative to the dissipation. The bimodality parameter

BA, has a similar trend, but there is still some weak dependence on kr. Furthermore, it appears

that the curves for different filter scales can be collapsed by shifting them horizontally, i.e., by a

multiplying factor to kr/Er. Except for r/r7 = 40, this factor ranges from 1.1 to 1.5. Thus, the

need for this factor might be a result of the limited Reynolds number (and the scale separations

between r and the integral length scales) in the present study. At higher Reynolds numbers, we

might expect improved scaling regions for kr-P(Erlkr) and collapse of the results for the bimodality

parameter. This result suggests that there may be "universal" dependence of the bimodality on

kf/Er. Thus, the results provide further evidence of the plane strain structure inferred from the

VFJDF.

D. Velocity-scalar FJDF, conditionally filtered scalar diffusion, and dissipation

This part focuses on the coupling between the SGS velocity and scalars, which is essential for

modeling the effects of the velocity on the SGS mixing.

The mean FJDF conditional on four variables: the SGS energy, the resolvable-scale velocity,

the SGS scalar variance, and the resolvable-scale scalar has qualitatively different forms depending

on the conditioning variables. For small kL (< (kL)) and (e' 2)L (< (0,,
2
)), the conditional FJDF

is close to joint-Gaussian (not shown), similar to the JPDF in a fully developed turbulent jet,

which is generally in quasi-equilibrium. For large (0"2)L the FJDF is bimodal at 0" /(0" 2 )L P ±1

regardless of the values of kL (Fig. 8), consistent with a scalar diffusion layer structure. For small kL

[Fig. 8(a)] the correlation between the SGS scalar and the velocity component ul is low, indicating

small conditional SGS flux. For large kL [Fig. 8(b)] the correlation is strong, and the two peaks

of the FJDF are also separated in the velocity space with a "neck" near ul = 0. Thus, scalar

mixing is expected to be most intense near this point and depends strongly on the velocity, further

demonstrating the need for mixing models to depend on the velocity. This FJDF shape is consistent

with a scalar diffusion layer associated with a local plane strain (converging-diverging) velocity field.

In such a structure the scalar gradient is largest in the diffusion layer, where the SGS velocity is

the smallest. The structure is similar to the counter-flow model for laminar flamelets. The FJDF

peaks in Fig. 8(a), on the other hand, overlap in the velocity space. Thus mixing can occur over a

wide range of SGS velocity and is less dependent on the velocity.

In the present study the scalar diffusion and dissipation were obtained using the streamwise

derivatives. For small ((y"2)L the diffusion generally has linear dependence on both the SGS velocity

and scalar. Figure 9(a) shows the conditionally filtered diffusion for small kL (0.52(kL)). In the

center portion the isocontours can be approximated by equally-spaced straight lines, consistent

with a previous linear model. For large kL the isocontours have a larger slope, indicating a stronger
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Figure 9: Mean conditionally filtered scalar diffusion: (a) kL/(kL) = 0.8 and (0"2)L/(0"2 ) = 0.94;
(b) kL/(kL) = 0.52 and (.0"2)L/(0"2 ) = 6.09. The diffusion in (a) is can be approximated using a
previous linear model (straight lines) whereas that in (b) has a S-shaped region.
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2 ) - 4.67. The dissipation in (b) shows

that mixing occurs primarily near ul = 0.

dependence on ul. The results are consistent with velocity-scalar fields having a joint normal JPDF.

For large SGS variance the surface plot of the diffusion is S-shaped and depends on ul for

certain ranges of kL values. Figure 9(b) shows the conditionally filtered diffusion for large (0"2/2 )L

(6.09(0"2)) but small kL. In addition to an approximately linear trend, an S-shaped dependence

on € exists for all ul values, consistent with the FJDF in Fig. 8(a), which shows that the bimodal

scalar distribution spans a wide range of velocity. For large kL the S-shaped region appears to be

limited to near ul = 0 (not shown), suggesting that large magnitudes of diffusion occur at small

SGS velocity. This issue is further discussed in the following, along with the dissipation.

The conditionally filtered scalar dissipation provides an alternative to the conditionally filtered

scalar diffusion to close the FJDF equation. For small (0S"2 )L the dissipation generally depends

weakly on both the velocity and scalar (not shown), consistent with the approximately joint nor-

mal FJDF. For small kL and large (0/ 2 )L the dissipation shown in Fig. 10(a) has a bell-shaped

dependence on € but is weakly dependent on ul. The dependence on 0 is consistent with the FJDF

in Fig. 8(a) and the S-shaped diffusion plot in Fig. 9(b). For large kL and (q0" 2 )L the dissipation

is largest at 0 = 0 and ul = 0 [Fig. 10(b)] and decreases as velocity increases, indicating a strong

dependence on the SGS velocity, consistent with the FJDF in Fig. 8(b) and the notion that the

diffusion layer is associated with a converging-diverging (e.g., plane strain) velocity field. In such a

structure the velocity component normal to the diffusion layer is small near the layer. This result

also suggests that the S-shaped surface for the scalar diffusion is limited to small ul values. Since

diffusion layers have been shown to exist at very high Reynolds numbers, the observed dependence

of scalar diffusion and dissipation on the velocity is expected to be Reynolds-number independent.

This study showed that there is a strong statistical dependence between scalar mixing (dissipation-
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scale scalar) and the SGS velocity field. The scalar and velocity structure for large SGS variance

(especially when the SGS energy is also large) is similar to the structure of laminar flamelets. Thus

the ability of mixing model to reflect such a structure and the localness of mixing is important.

The scalar diffusion conditional on the SGS velocity under such conditions is expected to be non-

zero and independent of Reynolds number. The results further demonstrate the importance of the

velocity in mixing and of including velocity in mixing models.

E. The joint structure of SGS velocity and scalar

The velocity-scalar FJDF observed suggests coupled structures of the SGS velocity and scalars.

We investigated the velocity-scalar increment JPDFs to further examine the structures.

When conditioned on Er and Xr (again, r is used in the subscript instead of a L to indicate that

the results are for increments), the joint PDF of velocity and scalar increments, Pav,,A0e,.X' is close

to joint Gaussian for a range of Er and X, values, consistent with Kolmogorov's refined similarity

hypotheses (K62)[20]. When conditioned on the local kinetic energy and the local scalar variance,

PAv,A~lkr,(01,, 2)r has different shapes depending on the values of the conditioning variables. For small
(0I2), and kr, it is close to joint normal [Fig. 11 (a)]. For small (02 2)r but large kr, it is bimodal in

Av, indicating a well-mixed local scalar field but a nonequilibrium local velocity field. The results

in Part C.[21] have shown that when kr is large the local turbulence is under rapid distortion,

and the local velocity field contains plain strain. Figure 11 (b) suggests that the plane strain does

not alter the distribution of a well-mixed scalar. For large (0"22)r but small kr, PAv,A0Jkr,(0/12,2)r

is bimodal in A0, indicating a nonequilibrium local scalar field but an equilibrium local velocity

field. Although the velocity is in quasi-equilibrium at scale r, the bimodal JPDF suggests that

there may be nonequilibrium velocity fields at smaller scales. Therefore, the diffusion layers under

such conditions might be highly wrinkled. When both (0"2), and kr are large, PAv,A0Ikr,(¢,,2), is

quad-modal, with one peak in each quadrant of the Av - A0 plane. This JPDF shape has not been

previously observed for inertial-range turbulence and provides further evidence of the combination

of a local plane strain and ramp-cliff (diffusion layer) structure.

The similarity between the SGS scalar at large SGS variance and binary mixing suggests that the

SGS scalar is in nonequilibrium. To further examine the role played by spectral nonequilibrium, we

computed the conditional production rate of (.0"2), )r, = -((Uj)r - (uj)r M(r) &()r, conditionaltuxj

on (€"2)r and Xr, respectively (Fig. 12). The averaging domain size r is 12577. When conditioned

on (q5"2),r, the conditional mean of 7P€r normalized by (Xr (I0r2),) is small for (0$"2 )r/( WW 2 ) < 1

and increases with (rkI2)• (, (€Y2)0.s), indicating that the local scalar field changes from quasi-

equilibrium to nonequilibrium as (0"2 )r increases. (A decaying scalar field has similar characteristics

to a quasi-equilibrium scalar field). On the other hand, when conditioned on the scalar dissipation,

P'PIr/Xr only increases by a factor of two over two orders of magnitude increase in Xr. The results
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given in the legend. B is essentially determined by (¢k' 2 )r/Xr, independent of (k"2),.

suggest that when conditioned on Xr, the conditional inertial-range scalar is, on average, in quasi-

equilibrium, whereas, when conditioned on (0'12)r, the degree of nonequilibrium of the conditional

inertial-range scalar increases with (0"2 ),. These results provide further evidence that the close-

to-Gaussian conditional increment PDFs are a result of quasi-equilibrium scalar fields as implied

in Kolmogorov's refined hypothesis, and suggests that the bimodal conditional FDFs are closely

related to the nonequilibrium of the conditional inertial-range scalar.

To quantify the dependence of the conditional PDFs on the degree of nonequilibrium, we com-

puted the bimodality parameter[181, B = K - S 2 , as a function of (0"2 )T/X, for three (M' 2),) values.

Figure 13 shows that B is approximately independent of (4/12), and is largely a function of (0" 2 )r/Xr

alone. Therefore, the conditional PDF is largely determined by the degree of nonequilibrium. For
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where p is the scaling exponent of (Er Ik,)- Approximate scaling ranges exist for all averaging domain
sizes (given in the legend).

large (0"2)r/Xr values B appears to decrease monotonically towards unity (the slight increase of B

for very large (0112 ),/X, is due to insufficient statistical convergence there), indicating that the con-

ditional increment PDF approaches a double delta function for strong nonequilibrium local scalar

fields. The results suggest that the degree of spectral nonequilibrium can be parameterized by the

ratio (0'),/Xr for three ((A" 2)", which can be modeled in LES.

F. Issues of modeling the filtered energy and scalar dissipation rates

In the velocity-scalar FJDF approach, the filtered energy dissipation and the filtered scalar

dissipation require modeling. The current practice uses the spectral equilibrium assumption and

therefore are inconsistent with the results discussed above. We investigated the issues of their

modeling.

We first examined the statistical relationship between kr and Er. Using Kolmogorov's refined

hypotheses[20], one can write k. = V2E2/ 3r2/3 for an inertial-range separation r, where V2 is a

universal stochastic variable independent of Er. Thus, the conditional mean (kr lEr) scales as er/,

which has been confirmed experimentally[22]. However, the scaling exponent for the reversed

conditional mean, (Erlkr) - kr, does not follow the K62 prediction of p = 3/2[221 and thus is
"anomalous". Here we obtained the scaling exponents p by multiplying kr-P to (Erlkr) to obtain a
flat portion of the curve (Fig. 14). For r/7 = 40, there is a clear scaling range between kr/(kr) =

0.01 and 3 with a scaling exponent of 0.763. For larger separations there are approximate scaling

ranges where the variations of krP (Er Ikr) are within 30% of the peak values. The exponents obtained

are between 0.765 and 0.77. We might expect that at higher Reynolds numbers more definitive
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scaling regions will emerge for these separations as well.

A possible explanation for the deviations of the observed scaling exponent p from predictions

of Kolmogorov's refined hypotheses is that the hypotheses are based on quasi-equilibrium inertial-

range spectral energy transfer, that is, the dissipation balances (or is larger than) the spectral

transfer. Under such conditions the local energy dissipation time kr/Er scales as the local energy

production (spectral transfer) time r/k/ 2 . When Er is used as the conditioning variable, this quasi-

equilibrium condition is likely to be satisfied because, for a given magnitude of energy dissipation,

there generally is a corresponding amount of the spectral transfer. Thus (krlEr) scales as E/3r 2/3

but the reverse scaling, (Erlkr) , kir/ 2, is not necessarily true because an increase in the spectral

transfer near the scale r can result in large kr and a non-equilibrium local velocity field with the

dissipation lagging behind. The nonequilibrium spectral transfer results in a slower increase of Er

than the equilibrium prediction of Er k /2 . In fact, the observed scaling Er "- k~r shows that

the ratio of the local energy dissipation time scale to the local production time scale varies as

/-P/r, which increases with kr. Thus, it appears that the anomalous scaling is due to the non-

equilibrium of the local velocity fields. The results show that models for EL must take into account

the nonequilibrium spectral transfer.

Next, we examined the issue of modeling XL. To understand the variations of the degree of

non-equilibrium of the local scalar fields, it is useful to examine the relationship between (0"2 )r and

Xr. In Fig. 15 we plot two conditional means, ((0"2)r IXr) and (Xrl(0"2)'r). The former increases as

Xr (the results are similar when XrEr1/3 is used as the conditioning variable), consistent with the

K62 prediction

(012 )r = V ,2XrE' 1/3r 2/ 3 , (13)

where V02 is also a universal stochastic variable independent of both Xr and Er. However, the latter

(as well as (XrE' 1/3j(0"2)r), not shown) scales approximately as (0"2)07; therefore it is at variance

with the K62 prediction of - (rk"2)r. A possible reason for the deviation of (XrI(dY2)r) from the

K62 scaling is that the conditional inertial-range scalar is in quasi-equilibrium when conditioned

on Xr, whereas, when conditioned on (0,2)r it can be in nonequilibrium: For a given value of Xr

there generally is a corresponding amount of spectral transfer (scales as ((A" 2 )r/WT). Therefore, the

scalar is in quasi-equilibrium. On the other hand, when (0Y2 2)r (therefore the spectral transfer) is

increased, Xr generally lags behind since it takes time for the increased spectral transfer rate to reach

the dissipation scales, resulting in non-equilibrium local scalar fields and a smaller scaling exponent

for (X2r (" 2)r). Therefore, models for XL must contain the effects of spectral nonequilibrium.

The influence of the velocity field is also important for modeling XL and (0k" 2 )L (the latter is

needed in non-PDF-based LES) and was examined. The conditional mean of (0' 2 )L conditional on

the filtered energy dissipation EL = (E)L and the SGS energy, ((0"2 )LIEL, kL), is given in Fig. 16(a).
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Figure 16: Conditional SGS scalar variance (a), SGS variance production (b), and filtered dissipa-
tion rate (c) conditional on EL and kL.

The results with sufficient statistical convergence are limited to an elliptic region that approximately

corresponds to the isocontours of the EL - kL JPDF[21]. At EL/(E) = 1 and kL/(kL) = 1 the SGS

variance is close to its mean value (((0S" 2 )LIEL, kL) = 0.9(0"2)), indicating that the SGS scalar is

close to its average conditions. Toward the lower right portion of the EL - kL plane the SGS variance

increases.

To understand this trend we computed the conditional means of the SGS variance production,

(POLIEL, kL). The result given in Fig. 16(b) is normalized by (X1LIEL, kL) and therefore repre-

sents the balance between the production and dissipation and the degree of nonequilibrium of the

SGS scalar. Similar to the SGS variance, the production also increases toward the lower right

portion of the EL - kL plane. In addition, the isocontours have approximately the same slopes

as those of (('" 2 ) LIEL, kL), suggesting that ((0"2)LIEL, kL) is largely determined by the degree of

non-equilibrium of the SGS scalar and increases with it.
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The conditionally filtered scalar dissipation rate, (X1LIEL, kL), has isocontours approximately

perpendicular to those of ((0,"2 )LIEL, kL) [Fig. 16(c)]. Therefore, X1L changes the fastest when the

degree of nonequilibrium of the SGS scalar is held constant (along the isocontours of ((,0" 2 LWcL, kL)

and (PBLIEL, kL)). For quasi-equilibrium spectral transfer, the filtered dissipation scales as XL "

(0"2 )L/rT4L, wh'ere TOL is the SGS scalar time scale. Therefore, Fig. 16(c) suggests that the increase

of X1L along the isocontours of (0" 2 )L is due to the decrease in trL caused by the velocity field.

The results in Figs. 16(b) & (c) suggest that the SGS velocity causes (05"2 )L and X1L to increase by

increasing the degree of non-equilibrium of the SGS scalar and by decreasing the SGS scalar time

scale, respectively.

To further examine the effects of the velocity field, we considered the equilibrium property

of the velocity field. A measure of the degree of nonequilibrium of the SGS velocity, which can

be obtained from the data, is the conditional production of the SGS energy (PLIkL, EL)/EL, where

PL = --((u1ui)L--(U1WUiW)ui/OX1, i = 1 and 2. The isocontours of PL (not shown) in the region

kL > (kL) have slopes similar to those of (POLIkL, EL)/X1L. The results suggest that the observed

trends for ((05"2 )LIEL, kL) and (X1L EL, kL) are largely related to the degree of nonequilibrium and

the time scale of the SGS velocity. Therefore, the velocity affects ((0"2 )LIEL, kL) and (X1LIEL, kL)

through different processes that appear to have "orthogonal" effects.

These results have implications for SGS modeling. The filtered scalar dissipation has been

modeled by assuming local equilibrium XL = PRL[23]. Figure 16(b) suggests that the model can be

improved by including EL and kL to account for the departure from equilibrium spectral transfer.

The production POL is available in velocity-scalar FJDF calculations and can be used to model

XL. In addition, for LES that solves scalar transport equations, POL/XL can be modeled using

((.0" 2 )LIEL, kL) and a scalar time scale determined by EL and kL. The results for ((,0' 2 )L IEL, kL)

can also be used to test models for (0"2 )L.

G. Preliminary study of the SGS mixing of the mixture fraction and the SGS flame

structure in turbulent flames

Using the knowledge of SGS mixing gained in non-reacting flows we began to conduct a prelimi-

nary study of the mixture fraction filtered mass density function (FMDF), the SGS mixture fraction

structure, and their influences on the SGS flame structure in turbulent flames. Experimental data

obtained in Sandia flames D and E by Karpetis and Barlow (www.ca.sandia.gov/TNF/abstract.html)

were used to analyze the SGS mixture fraction and the flame structure. One-dimensional filtering

in the radial direction on data segments was employed to compute the FMDF and other resolvable-

scale and subgrid-scale variables.

Conditional FMDF conditional on the Favre-filtered scalar (mixture fraction) and SGS scalar
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Figure 17: The mean conditional scalar FMDF (a) and the mean conditionally filtered scalar
dissipation (b) obtained in Sandia flame D at x/D=15 with a filter size of A. = 3.0mm. The filtered
mixture fraction (O)L is set to the stoichiometric mixture faction, ý,, and the SGS variance values

(ý2 )L are given in the legend. Both the FMDF and the conditionally filtered scalar dissipation
indicate qualitatively different SGS mixing regimes and SGS mixture fraction structure for small
and large variance values.

variance shows a similar trend to the non-reacting results. For SGS scalar variance small compared

to its mean, the FMDF is not far from Gaussian, and the conditionally filtered scalar dissipation

rate depends weakly on the SGS scalar, indicating that the SGS scalar is well mixed (Fig. 17).

For large SGS variance, however, the FMDF becomes bimodal, and the conditionally filtered scalar

dissipation is bell-shaped, indicating the existence of a diffusion (dissipation) layer structure that

is similar to the mixture fraction profile in the counter-flow model for laminar flamelets. For the

measurement locations considered (up to 30 jet diameters downstream) the difference in mixture

fraction values for the two FMDF peaks is generally larger than the reaction zone width in the mix-

ture fraction space, and therefore the mixing field under such conditions can support flamelets. The

conditionally filtered temperature near the stoichiometric mixture fraction decreases progressively

with increasing SGS scalar variance. Furthermore, local extinction events appear to occur mostly

when the SGS scalar variance is large, suggesting the possibility of flamelet extinction. These pre-

liminary results suggest that the mixing regimes and the associated mixture fraction structure could

potentially have a strong impact on the combustion regime and extinction/reignition in turbulent

nonpremixed flames.

IV Conclusions and suggestions for LES

The results obtained in this research significantly advanced the understanding of the SGS ve-

locity and scalar, which is important for modeling SGS mixing in LES of turbulent combustion.

The issues include the velocity VFJDF and velocity-scalar FJDF, the structure of the SGS velocity
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and scalar, the FJDF transport equation, and the filtered energy and scalar dissipation rates. The

specific conclusions and suggestions for LES are:

"* The velocity-scalar FJDF shows two mixing regimes: the equilibrium spectral transfer regime

with close-to-Gaussian velocity and scalar FJDFs, and the nonequilibrium regime with bi-

modal scalar FDF and uniform velocity FJDF. The velocity-scalar structure in the nonequi-

librium regime is similar to that of a laminar flamelet model. Therefore, consistency of mixing

models with the flamelet limit is important.

" The velocity FJDF shows that the SGS turbulence is under local rapid distortion when

the SGS velocity is in nonequilibrium. Eddy viscosity models (or when an eddy viscosity

is implied) are inconsistent with local rapid distortion because the evolution of turbulence

under rapid distortion is determined by the amount of strain, not the strain rate. The velocity-

wavevector PDF model of Slooten and Pope[24] could be adapted to LES to model the local

rapid distortion. However, this model may significantly increase the computational cost.

" The velocity-scalar FJDF and the dependence of the conditionally filtered scalar dissipation

and diffusion on the SGS velocity further demonstrate the need to include velocity information

in mixing models (e.g., the velocity conditioned model of Fox[25]). Currently employed mixing

models are generally independent of the velocity.

" The degree of spectral nonequilibrium can largely be characterized and potentially parame-

terized by the SGS scalar variance and filtered scalar dissipation for the SGS scalar and by the

SGS kinetic energy and the filtered energy dissipation rate for the SGS velocity. Therefore,

LES contains the essential information to model the degree of nonequilibrium.

The results also show that, contrary to Kolmogorov's refined hypotheses, the filtered dissipa-

tion XL and EL alone are not sufficient to describe the SGS scalar and velocity because the

hypotheses are based on equilibrium spectral transfer.

"• The filtered scalar and energy dissipation rates cannot be modeled accurately using the spec-

tral equilibrium assumption. Nonequilibrium effects must be considered. The velocity field

affects the SGS scalar variance and filtered scalar dissipation primarily by altering the degree

of spectral nonequilibrium and the SGS time scale of the scalar, respectively. The effects can

be parameterized by the SGS kinetic energy and the filtered energy dissipation rate. There-

fore, the models for the SGS scalar variance and filtered scalar dissipation can be further

improved by including the effects of the SGS kinetic energy and the filtered energy dissipa-

tion rate.
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In collaboration with Professors Pope, Givi, and Pitsch we are currently working on testing
models and LES predictions (FDF, etc.) and are exploring the possibilities of using the above

suggestions to improve models. For example, the measured SGS mixing time increases with the

SGS variance, whereas that used in the model does not. This model behavior does not allow the

SGS variance in LES to fluctuate to the large values observed in the experiments. In addition, the

conditional mixture fraction FMDF obtained in LES appears to have the bimodal shape at SGS

variance values much larger than those in the experiments. These model behaviors may have a

strong influence on the predicted reaction zone structure and will be addressed. Further activities

in this area will be included in future project reports.
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Interactions with researchers at AFRL

During the period of this grant, the PI initiated contacts with several researchers at AFRL to

seek opportunities for collaborations. Potential topics of collaborations were identified as a result of

the subsequent discussions with the researchers. In particular, the discussions with Dr. Campbell

Carter initiated by the PI in 2004 resulted in a collaborative project. In the summer of 2005, the

PI spent several weeks at AFRL as part of the collaboration.

This collaboration focuses primarily on issues of using measurements to improve of large eddy

simulation (LES) of nonpremixed turbulent combustion. In PDF-based LES approaches the subgrid-

scale mixing of multiple scalars must be modeled. Current mixing models are based primarily on

knowledge gained from two-stream mixing problems (e.g., fuel mixing with oxidizer). However,

in a reacting flow at least three scalars are involved (the third is a product). Therefore, under-

standing of three-stream SGS mixing is important for modeling mixing in nonpremixed turbulent

combustion. As a step toward understanding SGS mixing of multiple reactive scalars, the PI and

Dr. Carter will study the SGS mixing in a three-stream non-reacting jet. The jet nozzle consists

of an axisymmetric jet and an annulus from which acetone-doped air and ethylene are issued into

an air co-flow. Laser diagnostics (planar laser induced fluorescence and Rayleigh scattering) are

employed to obtain images of the species. This study will provide a basis for future investigations

of multi-scalar SGS mixing in turbulent flames.
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